
450 

Acta Cryst. (1995). D51, 450-457 

Master ing  the LORE of  Protein Structure 

By BARRY C. FINZEL 

Physical and Analytical Chemistry, The Up john Company, Kalamazoo, MI 49001, USA 

(Received 27 June 1994; accepted 22 November 1994) 

Abstract 

A detailed description of the design, operation and 
capabilities of LORE, a protein-database management 
tool to supplement more traditional protein map-fitting 
and model-building programs, is presented. The program 
includes elements for searching the library of known 
crystal structures for substructures of similar geometry. 
Substructures may be as simple as a single hairpin turn, 
or as complicated as an assembly of different elements of 
secondary structure. The programs also include elements 
for manipulating structural segments in complex ways to 
enable a sophisticated molecular editing capability of 
enormous utility in modeling and structure-refinement 
applications. 

I. Introduction 

A collection of software has been developed to make 
effective use of known protein structures in molecular 
modeling and crystallography. The program includes 
elements to identify substructures with particular geo- 
metric and sequence attributes from a library of known 
structures, and tools to superimpose homologous parts of 
protein stuctures. It also includes analytical tools and 
coordinate manipulation components designed to em- 
power the user with the capability to directly include 
structural information from other structures in their own 
developing molecular model. This software has been an 
indispensible tool for ab initio map fitting, protein 
structure refinement, model analysis, and homology 
modeling problems in our laboratory. 

The program originally grew out of frustration while 
practicing well established techniques for electron- 
density map interpretation. As protein crystallogra- 
phers, we have often struggled to fit an atomic model 
to electron density, even when the density apparently 
arises from a common structural motif. Moreover, many 
motifs are not so common or easily recognized. There 
really were no convenient tools in map-fitting graphics 
programs such as FRODO (Jones, 1985) to make use of 
past model-building successes. Since Alwyn Jones first 
showed us the way to rapidly search a known structure 
for like substructures (Jones & Thirup, 1986), we have 
been working to develop program tools that will make 
model building less tedious and more reliable by making 
it easier to incorporate structural details already known 
from other structures. 

In societies without written language, lore masters 
have often served as the collective memory of the 
culture, recalling the history of the entire society. The 
collection of stored atomic coordinates is, in some sense, 
the memory of the society of crystallographers. It 
contains all that we know about protein structure. The 
software described here has been designed to retrieve this 
coordinate lore and remind us of what we have already 
learned. It sets before our eyes the variety of macro- 
molecular structure, so that we can leam from it again 
and again. That is why we call it LORE. 

2. Concepts, definitions and program features 

To understand and appreciate the functionalities of 
LORE, the reader must be familiar with some general 
concepts. We define several of these in the following 
paragraphs to simplify the later program description. 

Fragments 

A 'fragment' in the vocabulary of LORE is any 
collection of residues and atoms loaded into memory. 
Many fragments may be held at once and each has its 
own separate identity. Fragments are composed of some 
arbitrary number of residues and corresponding atoms, 
assembled in a linked list data structure of indeterminent 
size. When fragments are first created, they may simply 
consist of pointers to residues in library structures. As 
atomic coordinates are added to fragments, they are 
rotated and translated to a particular position, usually to 
overlay some target substructure. (The target is defined 
below). As a consequence of this open-ended fragment 
definition, fragments need not be connected amino-acid 
residues, and may even include prosthetic groups or 
solvent molecules. 

When creating a fragment, LORE anticipates that it 
will be positioned to overlay the current target, and when 
possible a residue-to-residue correspondence is estab- 
lished between the fragment residues and target residues. 
This correspondence simplifies subsequent fragment 
manipulations such as superposition and coordinate 
substitution. 

Target 

One definition of 'target' is 'to set as a goal'. This is 
the definition most applicable to the target in LORE. The 

© 1995 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

Acta Crystallographica Section D 
ISSN 0907-4449 ©1995 



BARRY C. FINZEL 451 

user defines the target as a guide or template to shape 
subsequent LORE activity. The target serves a fourfold 
purpose: (1) it provide s the basis for deriving residue-to- 
residue correspondences with subsequently created 
fragment objects; (2) it provides the database search 
algorithm with a template of C,~ geometry needed to 
identify fragments of like geometry from known 
structures; (3) it defines the position and orientation of 
created fragments; and (4) specifies the number of 
residues in the residue mask (defined below). The target 
is defined by specifying residue ranges from the current 
molecular model. It may be as simple as a single residue 
or residue range, or as complicated as an assembly of 
disconnected residue segments. Residue and atom data 
are loaded into memory and held until overwritten by 
another target. Fragments subsequently retrieved from 
the library are always superimposed on some part of the 
target and the r.m.s, difference in position of super- 
imposed atoms is shown. Often, LORE relies on the 
target to provide sequence or atomic coordinate data for 
undefined or missing atoms. 

Much of the complexity of LORE arises out of the 
author's attempts to free the user from the limitations 
imposed by the target. The residue mask (defined below) 
and tolerance parameters (see information about the 
search algorithm below) are two ways to introduce 
flexibility to the target. After all, the object is to learn 
something we did not already know. If we require the 
user to precisely specify (with atomic coordinates) the 
geometry of the objects we hope to find, the purpose of a 

search is defeated. Nevertheless, some target specifica- 
tion is currently unavoidable. 

The database 

The database of known protein structures for LORE is 
layered to enhance efficiency in searching (Fig. 1). The 
lowest layer contains atomic coordinates of Protein Data 
Bank (PDB) entries (Bernstein et al., 1977). These are 
reformatted into residue-indexed direct-access files to 
simplify extraction of selected residue ranges. Layered 
over this is a database of 'chain information' containing 
amino-acid sequence and C~ geometry data for indi- 
vidual polypeptide chains in the PDB, and pointers to the 
complete atomic coordinate data in the lower layer. 
Chain information is the primary data used in searching. 
Atomic coordinate data in the lower layer is referenced 
only after homology has been confirmed through 
examination of sequence and geometry data contained 
in the chain information. The highest layer is a text-based 
index of chains. This index points to chain information 
and includes chain rankings based on properties such as 
uniqueness, resolution of the structure determination, R 
value, etc. The rank is helpful in selecting the specific 
subset of chains most appropriate to a particular 
application. For example, the user can restrict a search 
to only proteins from a given structural family simply by 
modifying the rankings in the index file and then 
selecting only the chains that meet a minimum rank 
requirement at run time. In our laboratory, structures are 

INDEX TO 
C H A I N S  

C H A I N  
I N F O R M A T I O N  

PDB 
C O O R D I N A T E  

D A T A  

I 
for each entry: 

chain_Id; 
chain_quality code; 
*chain_info; 

I H : c : a / H B - I  .2C~~ 

I 
chain_Id; ]chain_Id; 
num res; Inum_res; 
*pdb_data; I*pdb-data; 
res_names; ires names; 
aa_sequence; laa_sequence; 
CA_geometry; lea geometry; 

* p d b _ d a t ~  / 

IHHB N ~  

Residue index 
*residues[nres]; 
for each residue 

res_name; 
aa_type; 
natoms; 
*atoms[natoms]; 

for each atom 
atom_name; 
xyz; 
B; 

chain_Id; 
inum res; 
[*pdb-data; 
ires names; 
laa_sequence; 
CA geometry; 

2CYP 
• _ 

Residue index 
*residues[nres]; 
for each residue 

res_name; 
aa type; 
natoms; 
*atoms[natoms]; 

for each atom 
atom_name; 
xyz; 
B; 

Fig. 1. LORE database design. Com- 
ponents of the layered database are 
connected through pointers as illu- 
strated. Data elements that repre- 
sent pointers to additional data 
begin with '*', like in C structure 
declarations. Data derived from 
two PDB entries (Hemoglobin, 
1HHB; and cytochrome c perox- 
idase, 2CYP) are shown. The 
hemoglobin a- and fl-chains are 
two different entries in the chain 
index. 



452 CONFERENCE PROCEEDINGS 

most often ranked by quality (resolution, R value) and 
only the best chains are selected unless a larger database 
subset is necessary. All the database files can be derived 
directly from PDB files with software that is part of 
LORE. 

The residue mask 

The 'residue mask' is a component of the LORE user 
interface that provides a simple but very effective device 
for exercising residue-by-residue control over different 
LORE commands. The mask is the single most important 
construct to understand for effective use of LORE. It is 
through the mask that users specify particular sequence 
requirements in substructure searching (e.g. a glycine at 
the fourth residue position), or allow for conformational 
uncertainty when C a positions are not known or trusted. 
A facsimile of the residue mask interface is shown in Fig. 
2. Because it influences so many different LORE 
functions, the status of the mask is always on display 
in the LORE terminal window. Algorithmically, the mask 
consists of two logical arrays. The first array defines a 
logical state for each of the 20 amino acids, and specifies 
allowed sequences. This construct is used primarily in 
searching. The second array defines an on/off status for 
each residue in the target and, consequently, correspond- 
ing residues in a fragment. This on/off status has some 
impact on most LORE operations involving residues. It 
can be set to disable superposition at certain residues, for 
example, or identify amino acids and residue positions 

Target Status 
Segment I: 

5 L 
6 R 
7 D 
8 S 
9 N 

i0 Q 
ii K 

On 
On 
On 

Segment 2: 
41 Y 

Allowed Amino Acids 

On ACDEFGHIKLMNPQRSTVWY 
On ACDEFGHIKLMNPQRSTVWY 
On ACDEFGHIKLMNPQRSTVWY 
On ACDEFGHIKLMNPQRSTVWY 
Off DGNPST 
Off G 
Off DGNPST 

ACDEFGHIKLMNPQRSTVWY 
ACDEFGHIKLMNPQRSTVWY 
ACDEFGHIKLMNPQRSTVWY 

Off ACDEFGHIKLMNPQRSTVWY 
On ACDEFGHI KLMNPQRSTVWY 
On ACDEFGHI KLMNPQRSTVWY 
On ACDEFGHIKLMNPQRSTVWY 
On ACDEFGHIKLMNPQRSTVWY 
On ACDEFGHIKLMNPQRSTVWY 

Fig. 2. A reproduction of  the residue mask interface as it might appear 
while configuring LORE for a search of  the database. The user moves 
the cursor through a vertical stack of  residue names derived from the 
current target definition to set attributes of the residue mask. In this 
example, the target consists of two segments (residues 5-14 and 41-  
46). Residues 9, 10, 11 and 41 have been toggled off. The positions 
of C~ atoms in these residues will be ignored during the search. One- 
letter amino-acid codes at the right of each residue name show 
allowed amino acids. These are specified with single keystrokes or by 
Boolean combinations of  select amino-acid types or predefined 
groups (such as amino acids common in helices). In the present case, 
a glycine must occur in homologous fragments at residue 10. Turn- 
promoting residues are required at residues 9 and 11. 

that will be the target for side-chain rotamer expansion 
(see below). 

The search algorithm 

The search algorithm used in LORE for finding library 
substructures with conformational similarity to a target is 
derived from that of Jones & Thirup (1986). They 
showed that a rapid search can be conducted under the 
premise that similar substructures must have similar 
elements in a matrix containing inter-C a distances. 
Distances between all C a atoms are pre-computed for 
library structures and included in the chain information 
files of the database. If at least some C a positions are 
defined in the target residue range, the entire list of active 
chains can be screened very rapidly to find similar 
structures. The individual elements of a triangular matrix 
of inter-C a distances characteristic of the target residues 
[dr(i,j)] are compared with corresponding elements for 
each potential fragment [dF(i,j]] in the database. Any 
observed difference Idr(i,j) . -  dF(i,j) [ greater than a user 
selected tolerance (e.g. 1.0 A) causes immediate rejection 
of the fragment. This search technique was easily 
extended for application in searches where the target 
consists of multiple disconnected residue ranges. In this 
case, the additional equivalence (again with a user- 
selected tolerance) of appropriate inter-C a distances 
encoding the positional relationship of C a atoms in one 
residue range to those in another is required. The 
coupling of this simple but rapid algorithm with the 
flexible target specification and residue mask gives 
LORE unique capabilities. By turning off the position of 
residue i in the mask, the user directs that all distances 
involving residue i should be ignored. This is an 
excellent way to overcome small deficiencies in the 
original C a model. 

The result of the search is not superimposed atomic 
coordinates, but pointers to structures. Fragment atom 
data is not automatically loaded. This separation of 
functions is set up deliberately to offer the user the 
opportunity to perform the superposition with different 
residues enabled than for the search, or to repeat the 
superposition if needed. 

The superposition algorithm 

In LORE, the best correspondence between two sets of 
atoms is found by the method of Kabsch (1978), aligning 
a specific subset of atoms common (by name) to both 
sets. The superposition is driven by the residue-to- 
residue alignment established at the time a fragment is 
created. The superposition algorithms are also interfaced 
to the residue mask. Only target atoms from residues 
marked on at the corresponding mask position are used. 

The result of a superposition operation is a transfor- 
mation matrix and vector that will overlay the fragment 
atoms onto the target. The r.m.s, fit of common atoms 
then becomes an attribute of the created fragment. 



BARRY C. FINZEL 453 

Typically, only the fragment residues that correspond 
to the target are transformed and loaded into memory, but 
the derived transformation can as easily be applied to 
overlay other atoms, too. In this way, LORE can be used 
to superimpose whole protein molecules based on the 
alignment of only a few substructures, or to display 
bound inhibitor positions when it is actually the proteins 
that have been overlaid. 

Rotamers 

The idea of 'rotamers' (Ponder & Richards, 1987; 
Janin, Wodak, Levitt & Maigret, 1978), common 
conformations of amino-acid side chains that represent 
geometries of particular stability, is now widely 
accepted. To speed modeling, many graphics programs 
include push-button or menu-driven interfaces that 
generate a set of possible amino-acid side-chain 
conformations from which the correct conformation 
may be chosen. The addition of a rotamer look-up 
capability to other LORE algorithms is very beneficial, 
because the user may then assess the frequency of 
occurrence of different side-chain conformations in given 
main-chain conformational contexts. This functionality 
permits the interactive extension of generalizations about 
the relationship of side-chain conformations and second- 
ary structure (MacGregor, Islam & Sternberg, 1987) to 
very specific substructural motifs. Frequency analyses of 
this type can be quite predictive (Finzel, Kimatian, 
Ohlendorf, Wendoloski, Levitt & Salemme, 1990), or 
lead to the formulation of rules to guide protein modeling 
(Blundell, Sibanda, Sternberg & Thornton, 1987). 

Options for atom manipulation 

Additional flexibility is built into LORE to help the 
user manage the way sets of atoms are manipulated 
during various operations. A list of atom names (the 
superposition atom list) defines atoms from correspond- 
ing residues that will be overlaid during superposition. 
This can be set to C~, all main-chain atoms (N, C,,, C, O), 
or any arbitrary list. Since the r.m.s, fit of a fragment to 
the target is often taken as an indicator of a good fit, it is 
very useful to be able to limit the superposition to only 
trusted atom positions. This list, when coupled with the 
residue alignment control available through the residue 
mask, offers good flexibility without significantly 
complicating the user interface. A similar list of atom 
names specifies which atoms are replaced when target 
residues are replaced by their counterparts from a given 
fragment. In some applications, such as structure 
refinement, it is as important to leave atom parameters 
undisturbed during rebuilding as it is to make necessary 
corrections. If only certain side-chain atom positions are 
wanted from a given fragment, this can be easily 
arranged. Finally, since LORE does almost everything 
in memory, it is desirable to be able to optimize memory 
utilization. One can specify a list of names of atoms that 

are to be loaded into memory from the disk when 
fragments are created. Side-chain or solvent atoms can be 
easily ignored when these are not needed. 

3. Program implementation 

LORE is implemented as a mixed Fortran-77 and C- 
language program. While the software is self-contained 
and includes all functions necessary for substructure 
manipulation, it is not a graphics program, and includes 
no stand-alone fragment display capability. We have, 
therefore, implemented the program to run as a separate 
submode of PSFRODO (Pflugrath, Saper & Quiocho, 
1985). This is a convenient combination because 
PSFRODO already contains tools for electron-density 
display and model building that complement the database 
access functions of LORE. Fragments can be graphically 
displayed with a modified PSFRODO interface that 
allows independent viewing of up to 24 fragments 
simultaneously. The LORE software also has been 
written to retrieve (or send) new coordinates directly 
from (or to) PSFRODO memory to simplify information 
exchange between elements of the unified package. The 
software could be similarly implemented as a subpro- 
gram of any molecular modeling software, such as 
CHAIN (Sack, 1988), for which source code is available. 

Program functions are accessed through a flexible 
LORE command language interpreter. Typed commands 
invoke routines that perform a specific action. Case 
insensitivity, unique command abbreviations and exten- 
sive type-ahead capabilities are features of this interface. 
A subset of LORE commands is listed in Table 1. A brief 
summary of each command and the resulting action is 
given. Commands can be roughly grouped into five 
functional classes: those that impact database adminis- 
tration, target specification, fragment creation or manip- 
ulation, atomic coordinate I / 0 ,  or options that might 
impact any of the above. Residue mask specifications are 
input through a separate, highly interactive command 
structure activated whenever certain commands are 
invoked. 

To demonstrate how this software might be used, we 
include in this report two example applications of LORE. 
The first will illustrate how one can use LORE to expand 
upon a crude polyalanine C~ model to include all main- 
chain atoms and, eventually, side chains. This will show 
how the target is specified, how the search of known 
structures for similar substructures is done, how the 
backbone conformations of located fragments are 
incorporated in the growing model, and how to use the 
rotamer library to add side chains. A second example 
illustrates some general superposition capabilities of 
LORE. We shall superimpose two related molecules by 
targeting optimum correspondence between three dis- 
connected but conserved elements of secondary struc- 
ture, and then save the coordinates of the reoriented 
molecule for later reference. 



454 CONFERENCE PROCEEDINGS 

Table 1. LORE commands 

D a t a b a ~ ~ T o o l 8  
INDEX Search chains listed in the named index file. 
USE Search only chains with a quality rating above the requested minimum. 
LIST List chains currently enabled for searching. 
SAVE Save the current target residue range as a new chain in the database. 

Tar#~ S;~d~ 
TARGET Make the selected residue range(s) the current target. 
REVERSE Invert the direction of the advancing polypeptide chain in target 

segments. 
F~oment Man/pu/at/on 

AVERAGE 1 Create a new fragment by averaging selected fragments. 
EDIT Enter a subcommand mode to manage fragments in memory. 

KEEP Keep only selected fragments. 
DELETE Delete selected fragments from memory. 
SORT Sort fragments by goodness of fit or sequence homology (Dayhoff, et el. 

1978. 
MASK~ Select only fragments with certain sequence characteristics. 

FIND 1 Perform a search of the database for fragments with specific sequence 
or structural characteristics. 

I_~AD1 Retrieve atomic coordinates for fragments identified by FIND and 
superimpose them on the target. 

ROTAMER I Create fragments that  represent different side chain rotamers. 
SUPER I Perform general superposition of atoms onto the target. 

Atomic Coordinate I /0 
DISPLAY 
MAKEPDB 
REPLACE I 

Co.t,~ Optb,.. 
MASK 
SET 

SATOM 
RATOM 
LATOM 
TOLER 

I GNOR E 
MUTATE 
DMODE 

Analysis Tools 
FREQUENCY I 
~HK 1 

1Commands that  

Display selected fragments on the graphics device. 
Make PDB files from selected fragments. 
Replace coordinates of target residues with those from the selected 
fragment.  

Edit residue mask status. 
Enter subcommand mode to set cohtrol variables. 
Names of atoms in corresponding residues that will be overlaid. 
Names of atoms to be replaced with new positions. 
Names of atoms to be loaded into fragments. 
Define tolerances for Ca geometry search. 
Ignore solvent molecules in library structures (Yes or No). 
Mutate amino acid type during replacement (Yes or No). 
Set display mode to (all atoms, Ca backbone, ribbon). 

Determine rotamer frequencies in a given population of fragments. 
Delete fragments with outrageous non-bonded contacts. 

depend upon the state of the residue mask. 

Example 1. C~-backbone model expansion 

The rough C~ model that serves as the starting point 
for this example was built as previously described (Finzel 
et al., 1990) before entering LORE. We select residues 
A5 through A20 as the target (Fig. 3a). C,~ positions from 
this residue range define the geometry of similar objects 
that will be located from the database. The structure is 
obviously that of a 16-residue section of a-helix. This is 
a trivial example, but one that will serve to show how 
LORE commands must be combined to complete the 
model. 

The search is conducted with commands shown in Fig. 
3(b). Parameters defined with the set command define 
attributes of the search; the quality (and therefore the 
number) of chains to be selected from the chain index, 
and the tolerance that defines the largest acceptable 
difference (,~) in inter-C~ distance in a homologous 
fragment. The search is completed in a few seconds, with 
121 similar fragments found. We keep only the 50 most 

similar with the EDIT command, load and superimpose 
these 50 onto the target with the LOAD command, and 
then graphically examine some fragments. As fragments 
are selected for display, attributes of the created 
fragments are shown, including the r.m.s, fit of each 
fragment to the original target. If we find a backbone 
model we like, we can select it to replace our C,, model. 
In this case, they are so similar that it is difficult to 
choose, so we can compute an average main-chain 
geometry from the 20 best fragments (Fig. 3c) and then 
replace our original model with the average main-chain 
atom positions. 

Now we continue by adding side-chain atomic 
coordinates with the help of the rotamer utility. All 
rotamers for a phenylalanine are created at residue A 13 
and displayed with commands in Fig. 3(d). The 
residue(s) and amino acid(s) for rotamer expansion are 
selected through the residue mask interface (not shown). 
Once rotamers are generated, we simply set parameters to 
allow model mutation, select the rotamer we want to 



BARRY C. FINZEL 455 

keep, and replace (Fig. 3e). All side chains along the 
chain can be added the same way to complete the model. 

Example 2. General superposition 

In the second example (Fig. 4), we will superimpose 
elements of secondary structure known to be conserved 
in two different protein structures so that the two 
structures may be compared, the E. coli ribonuclease H 
(PDB entry 1RNH; Yang, Hendrickson, Crouch & 
Satow, 1990) and the RNase H domain of the HIV-1 
virus (PDB entry 1HRH; Davies, Hostomska, Hosto- 
msky, Jordan & Matthews, 1991). We assume no 

knowledge of the identity of corresponding residues in 
the two structures, but we can use the search capabilities 
of LORE to find these correspondences for us. 

If it is not already done, we first must add atomic 
coordinates for one of the structures (e.g. 1RNH) to the 
searchable database of known structures. This can be 
done directly from the PDB entry with a supplementary 
program (MAKCHN) that is part of  LORE. The HIV-1 
RNase H model is defined as our current model. We will 
superimpose the E. coli model onto this. 

We must first select a target. The target should define 
structural attributes unique to this class of proteins. We 
choose three segments, one long helical section and two 

taroet a5 a20 

(a) 

set aualitv 2 tolerance 1.0 

find 
121 Fragments defined 

edit keep 1-50 

load 1,Q 

dlsmlav 1-30 

50 Fragments defined 
Atoms Sequence Common r.m.s. Fragment 

Source Resl held Homology Atoms fit Sequence 
1 2CCY B B84 115 0 85 16 0.39 EGWKALATESTKLA 
2 5CPA 289 127 0 79 16 0.40 TAQETWLGVLTIME 
3 2HHB BBI01 125 0 75 16 0.41 ENFRLLGNVLVCVL 
4 IECA 55 133 0 74 16 0.43 FETHANRIVGFFSK 
5 IMBA 126 121 0 75 16 0.44 ADAAWTKLFGLIID 
6 2HHB B B60 114 0 84 16 0.44 VKAHGKKVLGAFSD 
7 ISNC 121 136 0 85 16 0.48 HEQHLRKSEAQAKK 
... 

(b) 

averaae 1-20 
1 Average fragment (51) created. 

set mmltate no ratom n ca cb c o 

replace 51 

(c) 

taraet a5 a20 

rotc~er 
4 Rotomers Loaded 

disPlaY 1-4 

(~ 

set mutate yes ratom all \ ~ \ ~ \ ~ /  

replace active 2 
MASK specifies which residues are to be replaced 
The aa sequence of the fragment will be adopted 

(e) 

Fig. 3. Example of Ca-backbone 
model expansion performed with 
LORE. 



456 CONFERENCE PROCEEDINGS 

paired fl-strands (Fig. 4a). These form part of the 
structural core of the HIV-1 RNase H molecule that we 
expect to be conserved. We will look for structures in the 
database that share the geometry of each individual 
segment, and also the same structural relationship 
between the segments. 

Before we conduct a search or do any superposition 
we must adjust some search parameters. We increase the 
intersegment tolerance to 2.5 A, because it regulates the 
allowed tolerance in the relative orientation of one of our 
target segments (an element of secondary structure) to 
another. The intrasegment tolerance, which allows for 
variation within a segment, is 1.0 ,~,. We establish that the 

superposition will be performed with all main-chain 
atoms (N, C,, C, O) (Fig. 4b). 

Now we conduct the search just like in example 1. 
Multi-segmented searches take longer, but we still get the 
result in a few seconds. Only one other structure in our 
library contains this ceflfl motif, the E. coli RNase H we 
sought. The dashed C a backbone in Fig. 4(b) shows how 
these segments conform to those in the target. 

We could use LOAD to pull this three-segment 
fragment into memory as in example 1, but we are still 
interested in seeing the entire 1RNH molecule, so we will 
use SUPER. In invoking SUPER, we use the 
SEQUENCE option that defers to a selected fragment 

~aruet a475 a48~ a453 a457 a464 a469 

(a) 

set tolerance 1.0 2.5 aat~n ca c 9 

SET option Description Current value 
SATOM Superposition Atom List [N CA C O] 
LATOM Load Fragment Atom List [ALL] 
RATOM Replacement Atom List [N CA CB C O] 
LIBRARY Library Directory Path LORE$LIBRARY: 
INDEX Current Chain Index LORE$INDEX 
QUALITY Chain Quality Factor [I] 
VOID Unreplaced atoms voided [NO] 
MUTATE Adopt Fragment sequence [NO] 
RADIUS Superposition Exclusion [30.00] 
TOLERANCES Intra and Inter-Segment [1.00,2.50] 
IGNORE Solvent residues in Lib [YES] 
VERBOSE Copius output to LOG [NO] 
MMODE Mask specification mode [INTERACTIVE] 
DMODE Display Mode [CA] 

find 

(b) 

Select Sequence to drive superposition: 1 
88 Atoms have rms difference in position of 0.71 

Enter residue range of PROBE to be copied: all 

~isDlav i 

makemdb 1 1RNH-ON-IHRH.Ddb 

(c) 

Fig. 4. Example of intermolecular 
superposition performed with 
LORE. 



B A R R Y  C. FINZEL 457 

or sequence entry in memory for identification of 
residues to be paired. We then instruct it to load the 
entire E. coli model. The reoriented atomic coordinates 
are now available as fragment 1 (Fig. 4c). They can be 
displayed or saved for examination at another time. 

4. Summary 

L O R E  is not the first program to be written to take 
advantage of protein structural data, nor will it be the last. 
It does have some unique capabilities that, to our 
knowledge,  are not joined in any other software. While 
O (Jones, Zou, Cowan & Kjeldgaard, 1991) includes 
extremely powerful tools for ab initio map interpretation 
and model building using substructure libraries (Zou & 
Mowbray,  1994), it does not include the atom 
manipulation or target specification flexibility that 
readily extends such tools to applications in structure 
refinement or model analysis. F R A G L E  (Finzel et al., 
1990), the direct predecessor of L O R E ,  does not use the 
open-ended fragment data structures that makes L O R E  so 
useful as a general structural comparison tool. 

Over the past six years, we have used L O R E  
extensively in map fitting, structure analysis, and 
homology modeling, and have come to rely heavily on 
database structural information to guide our efforts. It has 
become an indispensible part of  our software toolkit. 

References 

BERNSTEIN, F. C., KOETZLE, T. F., WILLIAMS, G. J. B., MEYER, E. F. JR, 
BRICE, M. D., RODGERS, J. R., KENNARD, O., SHIMANOUCHI, T. & 
TASUMI, M. (1977). J. Mol. Biol. 112, 535-542. 

BLUNDELL, T. L., SIBANDA, B. L., STERNBERG, M. J. E. & THORNTON, J. 
M. (1987). Nature (London), 326, 347-352. 

DAVIES, J. F. II, HOSTOMSKA, Z., HOSTOMSKY, Z., JORDAN, S. R. & 
MATTHEWS, D. A. (1991). Science, 252, 88-95. 

DAYHOFF, M. O., SCHWARTZ, R. M. & ORCUIq', B. C. (1978). In Atlas of 
Protein Sequence and Structure, Vol. 5, Suppl. 3, edited by M. O. 
DAYHOFF, pp. 345-352. Washington DC: Nat. Biomed. Res. Found. 

FINZEL, B. C., KIMAT1AN, S., OHLENDORF, D. H., WENDOLOSKI, J. J., 
LEVlTr, M. & SALEMME, F. R. (1990). In Crystallographic and 
Modeling Methods in Molecular Design, edited by C. E. BUGG & S. 
E. EALICK pp. 175-188. New York: Springer-Verlag. 

JANIN, J., WODAK, S., LEVWr, M. & MAIGRET, B. (1978). J. Mol. Biol. 
125, 357-386. 

JONES, T. A. (1985). Methods Enzyrnol. 115, 157-171. 
JONES, T. A. & THIRUP, S. (1986). EMBO J. 5, 819-822. 
JONES, T. A., Zou, J.-Y., COWAN, S. W. • KJELDGAARD, M. (1991). 

Acta Cryst. A47, 110-119. 
KABSCH, W. (1978). Acta Cryst. A34, 827-828. 
MACGREGOR, M. J., ISLAM, S. A. & STERNBERG, M. J. E. (1987). J. Mol. 

Biol. 198, 295-310. 
PFLUGRATH, J. W., SAPER, M. A. & QUIOCHO, F. A. (1985). In Methods 

and Applications in Crystallographic Computing, edited by S. HALL 
8Z T. ASHIDA pp. 404-407. Oxford Univ. Press. 

PONDER, J. W. & RICHARDS, F. M. (1987). J. Mol. Biol. 195, 775-791. 
SACK, J. S. (1988). J. Mol. Graphics, 6, 224-225. 
YANG, W., HENDRICKSON, W. A., CROUCH, R. J. & SATOW, Y. (1990). 

Science, 249, 1398-1405. 
Zou, J.-Y. & MOWBRAY, S. L. (1994). Acta Cryst. D50, 237-249. 


